The novel coronavirus disease (COVID-19) is a highly contagious respiratory disease that was first detected in Wuhan, China in December 2019, and has since spread around the globe, claiming more than 69,000 lives by the time this protocol is written. It has been widely acknowledged that the most effective public policy to mitigate the pandemic is emph{social and physical distancing}: keeping at least six feet away from people, working from home, closing non-essential businesses, etc. There have been a lot of anecdotal evidences suggesting that social distancing has a causal effect on disease mitigation; however, few studies have investigated the effect of social distancing on disease mitigation in a transparent and statistically-sound manner. We propose to perform an optimal non-bipartite matching to pair counties with similar observed covariates but vastly different average social distancing scores during the first week (March 16th through Match 22nd) of Presidents emph{15 Days to Slow the Spread} campaign. We have produced a total of $302$ pairs of two U.S. counties with good covariate balance on a total of $16$ important variables. Our primary outcome will be the average observed illness collected by Kinsa Inc. two weeks after the intervention period. Although the observed illness does not directly measure COVID-19, it reflects a real-time aspect of the pandemic, and unlike confirmed cases, it is much less confounded by counties testing capabilities. We also consider observed illness three weeks after the intervention period as a secondary outcome. We will test a proportional treatment effect using a randomization-based test with covariance adjustment and conduct a sensitivity analysis.