Continuously parametrized quantum simulation of molecular electron transfer reactions


الملخص بالإنكليزية

A comprehensive description of molecular electron transfer reactions is essential for our understanding of fundamental phenomena in bio-energetics and molecular electronics. Experimental studies of molecular systems in condensed-phase environments, however, face difficulties to independently control the parameters that govern the transfer mechanism with high precision. We show that trapped-ion experiments instead allow to reproduce and continuously connect vastly different regimes of molecular charge transfer through precise tuning of, e.g., phonon temperature, electron-phonon interactions, and electronic couplings. Such a setting allows not only to reproduce widely-used transport models, such as Marcus theory. It also provides access to transfer regimes that are unattainable for molecular experiments, while controlling and measuring the relevant observables on the level of individual quanta. Our numerical simulations predict an unconventional quantum transfer regime, featuring a transition from quantum adiabatic- to resonance-assisted transfer as a function of the donor-acceptor energy gap, that can be reached by increasing the electronic coupling at low temperatures. Trapped ion-based quantum simulations thus promise to enhance our microscopic understanding of molecular electron transfer processes, and may help to reveal efficient design principles for synthetic devices.

تحميل البحث