Towards full surface Brillouin zone mapping by coherent multi-photon photoemission


الملخص بالإنكليزية

We report a novel approach for coherent multi-photon photoemission band mapping of the entire Brillouin zone with infrared light that is readily implemented in a laboratory setting. We excite a solid state material, Ag(110), with intense femtosecond laser pulses to excite higher-order multi-photon photoemission; angle-resolved electron spectroscopic acquisition records photoemission at large in-plane momenta involving optical transitions from the occupied to unoccupied bands of the sample that otherwise might remain hidden by the photoemission horizon. We propose this as a complementary ultrafast method to time- and angle-resolved two-color, e.g. infrared pump and extreme ultraviolet probe, photoemission spectroscopy, with the advantage of being able to measure and control the coherent electron dynamics.

تحميل البحث