Holonomy and vortex structures in quantum hydrodynamics


الملخص بالإنكليزية

In this paper we consider a new geometric approach to Madelungs quantum hydrodynamics (QHD) based on the theory of gauge connections. Unlike previous approaches, our treatment comprises a constant curvature thereby endowing QHD with intrinsic non-zero holonomy. In the hydrodynamic context, this leads to a fluid velocity which no longer is constrained to be irrotational and allows instead for vortex filaments solutions. After exploiting the Rasetti-Regge method to couple the Schrodinger equation to vortex filament dynamics, the latter is then considered as a source of geometric phase in the context of Born-Oppenheimer molecular dynamics. Similarly, we consider the Pauli equation for the motion of spin particles in electromagnetic fields and we exploit its underlying hydrodynamic picture to include vortex dynamics.

تحميل البحث