Fast magnetic reconnection was observed between magnetized laser-produced plasmas at the National Ignition Facility. Two highly-elongated plasma plumes were produced by tiling two rows of lasers, with magnetic fields generated in each plume by the Biermann battery effect. Detailed magnetic field observations, obtained from proton radiography using a D$^3$He capsule implosion, reveal reconnection occurring in an extended, quasi-1D current sheet with large aspect ratio $sim 100$. The 1-D geometry allowed a rigorous and unique reconstruction of the magnetic field, which showed a reconnection current sheet that thinned down to a half-width close to the electron gyro-scale. Despite the large aspect ratio, a large fraction of the magnetic flux reconnected, suggesting fast reconnection supported by the non-gyrotropic electron pressure tensor.