Designing Magnetic Topological van der Waals Heterostructure


الملخص بالإنكليزية

We demonstrate a new method of designing 2D functional magnetic topological heterostructure (HS) by exploiting the vdw heterostructure (vdw-HS) through combining 2D magnet CrI$_3$ and 2D materials (Ge/Sb) to realize new 2D topological system with nonzero Chern number (C=1) and chiral edge state. The nontrivial topology originates primarily from the CrI$_3$ layer while the non-magnetic element induces the charge transfer process and proximity enhanced spin-orbit coupling. Due to these unique properties, our topological magnetic vdw-HS overcomes the weak magnetization via proximity effect in previous designs since the magnetization and topology coexist in the same magnetic layer. Specifically, our systems of bilayer CrI$_3$/Sb and trilayer CrI$_3$/Sb/CrI$_3$ exhibit different topological ground state ranging from antiferromagnetic topological crystalline insulator (C$_M$= 2) to a QAHE. These nontrivial topological transition is shown to be switchable in a trilayer configuration due to the magnetic switching from antiferromagnetism to ferromangetism in the presence an external perpendicular electric field with value as small as 0.05 eV/A. Thus our study proposes a realistic system to design switchable magnetic topological device with electric field.

تحميل البحث