We investigate spin-charge conversion phenomena in hybrid structures of topological insulator (TI) thin films and magnetic insulators. We find an anisotropic inverse spin-galvanic effect (ISGE) that yields a highly tunable spin-orbit torque (SOT). Concentrating on the quasiballistic limit, we also predict a giant anisotropic magnetoresistance (AMR) at low dopings. These effects, which have no counterparts in thick TIs, depend on the simultaneous presence of the hybridization between the surface states and the in-plane magnetization. Both the ISGE and AMR exhibit a strong dependence on the magnetization and the Fermi level position and can be utilized for spintronics and SOT-based applications at the nanoscale.