Quantum Black Hole Seismology I: Echoes, Ergospheres, and Spectra


الملخص بالإنكليزية

Searches for gravitational wave echoes in the aftermath of mergers and/or formation of astrophysical black holes have recently opened a novel and surprising window into the quantum nature of their horizons. Similar to astro- and helioseismology, study of the spectrum of quantum black holes provides a promising method to understand their inner structure, what we call $textit{quantum black hole seismology}$. We provide a detailed numerical and analytic description of this spectrum in terms of the properties of the Kerr spacetime and quantum black hole horizons, showing that it drastically differs from their classical counterparts. Our most significant findings are the following: (1) If the temperature of quantum black hole is $lesssim 2 times$ Hawking temperature, then it will not suffer from ergoregion instability (although the bound is looser at smaller spins). (2) We find how quantum black hole spectra pinpoint the microscopic properties of quantum structure. For example, the detailed spacing of spectral lines can distinguish whether quantum effects appear through compactness (i.e., exotic compact objects) or frequency (i.e., modified dispersion relation). (3) We find out that the overtone quasinormal modes may strongly enhance the amplitude of echo in the low-frequency region. (4) We show the invariance of the spectrum under the generalized Darboux transformation of linear perturbations, showing that it is a genuine covariant observable.

تحميل البحث