We consider a system in which an information source generates independent and identically distributed status update packets from an observed phenomenon that takes $n$ possible values based on a given pmf. These update packets are encoded at the transmitter node to be sent to the receiver node. Instead of encoding all $n$ possible realizations, the transmitter node only encodes the most probable $k$ realizations and disregards whenever a realization from the remaining $n-k$ values occurs. We find the average age and determine the age-optimal real codeword lengths such that the average age at the receiver node is minimized. Through numerical evaluations for arbitrary pmfs, we show that this selective encoding policy results in a lower average age than encoding every realization and find the age-optimal $k$. We also analyze a randomized selective encoding policy in which the remaining $n-k$ realizations are encoded and sent with a certain probability to further inform the receiver at the expense of longer codewords for the selected $k$ realizations.