We have systematically investigated the mass spectrum and rearrangement decay properties of the exotic tetraquark states with four different flavors using a color-magnetic interaction model. Their masses are estimated by assuming that the $X(4140)$ is a $csbar{c}bar{s}$ tetraquark state and their decay widths are obtained by assuming that the Hamiltonian for decay is a constant. According to the adopted method, we find that the most stable states are probably the isoscalar $bsbar{u}bar{d}$ and $csbar{u}bar{d}$ with $J^P=0^+$ and $1^+$. The width for most unstable tetraquarks is about tens of MeVs, but that for unstable $cubar{s}bar{d}$ and $csbar{u}bar{d}$ can be around 100 MeV. For the $X(5568)$, our method cannot give consistent mass and width if it is a $bubar{s}bar{d}$ tetraquark state. For the $I(J^P)=0(0^+),0(1^+)$ double-heavy $T_{bc}=bcbar{u}bar{d}$ states, their widths can be several MeVs.