Atomic microwave-to-optical signal transduction via magnetic-field coupling in a resonant microwave cavity


الملخص بالإنكليزية

Atomic vapors offer many opportunities for manipulating electromagnetic signals across a broad range of the electromagnetic spectrum. Here, a microwave signal with an audio-frequency modulation encodes information in an optical signal by exploiting an atomic microwave-to-optical double resonance, and magnetic-field coupling that is amplified by a resonant high-Q microwave cavity. Using this approach, audio signals are encoded as amplitude or frequency modulations in a GHz carrier, transmitted through a cable or over free space, demodulated through cavity-enhanced atom-microwave interactions, and finally, optically detected to extract the original information. This atom-cavity signal transduction technique provides a powerful means by which to transfer information between microwave and optical fields, all using a relatively simple experimental setup without active electronics.

تحميل البحث