We consider the $1d$ cubic nonlinear Schrodinger equation with a large external potential $V$ with no bound states. We prove global regularity and quantitative bounds for small solutions under mild assumptions on $V$. In particular, we do not require any differentiability of $V$, and make spatial decay assumptions that are weaker than those found in the literature (see for example cite{Del,N,GPR}). We treat both the case of generic and non-generic potentials, with some additional symmetry assumptions in the latter case. Our approach is based on the combination of three main ingredients: the Fourier transform adapted to the Schrodinger operator, basic bounds on pseudo-differential operators that exploit the structure of the Jost function, and improved local decay and smoothing-type estimates. An interesting aspect of the proof is an approximate commutation identity for a suitable notion of a vectorfield, which allows us to simplify the previous approaches and extend the known results to a larger class of potentials. Finally, under our weak assumptions we can include the interesting physical case of a barrier potential as well as recover the result of cite{MMS} for a delta potential.