The UV/optical peak and X-ray brightening in TDE candidate AT2019azh: A case of stream-stream collision and delayed accretion


الملخص بالإنكليزية

We present and analyze the optical/UV and X-ray observations of a nearby tidal disruption event (TDE) candidate AT2019azh, spanning from 30 d before to ~ 250 d after its early optical peak. The X-rays show a late brightening by a factor of ~ 30-100 around 250 days after discovery, while the UV/opticals continuously decayed. The early X-rays show two flaring episodes of variation, temporally uncorrelated with the early UV/opticals. We found a clear sign of X-ray hardness evolution, i.e., the source is harder at early times, and becomes softer as it brightens later. The drastically different temporal behaviors in X-rays and UV/opticals suggest that the two bands are physically distinct emission components, and probably arise from different locations. These properties argue against the reprocessing of X-rays by any outflow as the origin of the UV/optical peak. The full data are best explained by a two-process scenario, in which the UV/optical peak is produced by the debris stream-stream collisions during the circularization phase; some low angular momentum, shocked gas forms an early, low-mass accretion disk which emits the early X-rays. The major body of the disk is formed after the circularization finishes, whose enhanced accretion rate produces the late X-ray brightening. AT2019azh is a strong case of TDE whose emission signatures of stream-stream collision and delayed accretion are both identified.

تحميل البحث