Two-derivative error inhibiting schemes with post-processing


الملخص بالإنكليزية

High order methods are often desired for the evolution of ordinary differential equations, in particular those arising from the semi-discretization of partial differential equations. In prior work in we investigated the interplay between the local truncation error and the global error to construct error inhibiting general linear methods (GLMs) that control the accumulation of the local truncation error over time. Furthermore we defined sufficient conditions that allow us to post-process the final solution and obtain a solution that is two orders of accuracy higher than expected from truncation error analysis alone. In this work we extend this theory to the class of two-derivative GLMs. We define sufficient conditions that control the growth of the error so that the solution is one order higher than expected from truncation error analysis, and furthermore define the construction of a simple post-processor that will extract an additional order of accuracy. Using these conditions as constraints, we develop an optimization code that enables us to find explicit two-derivative methods up to eighth order that have favorable stability regions, explicit strong stability preserving methods up to seventh order, and A-stable implicit methods up to fifth order. We numerically verify the order of convergence of a selection of these methods, and the total variation diminishing performance of some of the SSP methods. We confirm that the methods found perform as predicted by the theory developed herein.

تحميل البحث