Additive Schwarz Methods for Convex Optimization as Gradient Methods


الملخص بالإنكليزية

This paper gives a unified convergence analysis of additive Schwarz methods for general convex optimization problems. Resembling to the fact that additive Schwarz methods for linear problems are preconditioned Richardson methods, we prove that additive Schwarz methods for general convex optimization are in fact gradient methods. Then an abstract framework for convergence analysis of additive Schwarz methods is proposed. The proposed framework applied to linear elliptic problems agrees with the classical theory. We present applications of the proposed framework to various interesting convex optimization problems such as nonlinear elliptic problems, nonsmooth problems, and nonsharp problems.

تحميل البحث