We study the evolution of a small-scale emerging flux region (EFR) in the quiet Sun, from its emergence to its decay. We track processes and phenomena across all atmospheric layers, explore their interrelations and compare our findings with recent numerical modelling studies. We used imaging, spectral and spectropolarimetric observations from space-borne and ground-based instruments. The EFR appears next to the chromospheric network and shows all characteristics predicted by numerical simulations. The total magnetic flux of the EFR exhibits distinct evolutionary phases, namely an initial subtle increase, a fast increase and expansion of the region area, a more gradual increase, and a slow decay. During the initial stages, bright points coalesce, forming clusters of positive- and negative-polarity in a largely bipolar configuration. During the fast expansion, flux tubes make their way to the chromosphere, producing pressure-driven absorption fronts, visible as blueshifted chromospheric features. The connectivity of the quiet-Sun network gradually changes and part of the existing network forms new connections with the EFR. A few minutes after the bipole has reached its maximum magnetic flux, it brightens in soft X-rays forming a coronal bright point, exhibiting episodic brightenings on top of a long smooth increase. These coronal brightenings are also associated with surge-like chromospheric features, which can be attributed to reconnection with adjacent small-scale magnetic fields and the ambient magnetic field. The emergence of magnetic flux even at the smallest scales can be the driver of a series of energetic phenomena visible at various atmospheric heights and temperature regimes. Multi-wavelength observations reveal a wealth of mechanisms which produce diverse observable effects during the different evolutionary stages of these small-scale structures.