We analyze the combination of multiple predictive distributions for time series data when all forecasts are misspecified. We show that a specific dynamic form of Bayesian predictive synthesis -- a general and coherent Bayesian framework for ensemble methods -- produces exact minimax predictive densities with regard to Kullback-Leibler loss, providing theoretical support for finite sample predictive performance over existing ensemble methods. A simulation study that highlights this theoretical result is presented, showing that dynamic Bayesian predictive synthesis is superior to other ensemble methods using multiple metrics.