Global stability of rigid-body-motion fluid-structure-interaction problems


الملخص بالإنكليزية

A rigorous derivation and validation for linear fluid-structure-interaction (FSI) equations for a rigid-body-motion problem is performed in an Eulerian framework. We show that the added-stiffness terms arising in the formulation of Fanion et al. (2000) vanish at the FSI interface in a first-order approximation. Several numerical tests with rigid-body motion are performed to show the validity of the derived formulation by comparing the time evolution between the linear and non-linear equations when the base flow is perturbed by identical small-amplitude perturbations. In all cases both the growth rate and angular frequency of the instability matches within $0.1%$ accuracy. The derived formulation is used to investigate the phenomenon of symmetry breaking for a rotating cylinder with an attached splitter-plate. The results show that the onset of symmetry breaking can be explained by the existence of a zero-frequency linearly unstable mode of the coupled fluid-structure-interaction system. Finally, the structural sensitivity of the least stable eigenvalue is studied for an oscillating cylinder, which is found to change significantly when the fluid and structural frequencies are close to resonance.

تحميل البحث