The paper studies a class of quantum stochastic differential equations, modeling an interaction of a system with its environment in the quantum noise approximation. The space representing quantum noise is the symmetric Fock space over L^2(R_+). Using the isomorphism of this space with the space of square-integrable functionals of the Poisson process, the equations can be represented as classical stochastic differential equations, driven by Poisson processes. This leads to a discontinuous dynamical state reduction which we compare to the Ghirardi-Rimini-Weber model. A purely quantum object, the norm process, is found which plays the role of an observer (in the sense of Everett [H. Everett III, Reviews of modern physics, 29.3, 454, (1957)]), encoding all events occurring in the system space. An algorithm introduced by Dalibard et al [J. Dalibard, Y. Castin, and K. M{o}lmer, Physical review letters, 68.5, 580 (1992)] to numerically solve quantum master equations is interpreted in the context of unravellings and the trajectories of expected values of system observables are calculated.