Fermi level tuning of one-dimensional giant Rashba system on a semiconductor substrate: Bi/GaSb(110)-(2x1)


الملخص بالإنكليزية

We fabricated spin-polarized surface electronic states with tunable Fermi level from semiconductor to low-dimensional metal in the Bi/GaSb(110)-(2$times$1) surface using angle-resolved photoelectron spectroscopy (ARPES) and spin-resolved ARPES. The spin-polarized surface band of Bi/GaSb(110) exhibits quasi-one-dimensional character with the Rashba parameter $alpha _{rm R}$ of 4.1 and 2.6 eVAA at the $bar{Gamma}$ and $bar{rm Y}$ points of the surface Brillouin zone, respectively. The Fermi level of the surface electronic state is tuned in situ by element-selective Ar-ion sputtering on the GaSb substrate. The giant Rashba-type spin splitting with switchable metallic/semiconducting character on semiconductor substrate makes this system a promising candidate for future researches in low-dimensional spintronic phenomena.

تحميل البحث