The $f(R,T)$ theory of gravitation is an extended theory of gravitation in which the gravitational action contains both the Ricci scalar $R$ and the trace of energy momentum tensor $T$ and hence the cosmological models based on $f(R,T)$ gravity are eligible to describing late time acceleration of present universe. In this paper, we investigate an accelerating model of flat universe with linearly varying deceleration parameter (LVDP). We apply the linearly time varying law for deceleration parameters that generates a model of transitioning universe from early decelerating phase to current accelerating phase. We carry out the state-finder and Om(z) analysis, and obtain that LVDP model have consistency with astrophysical observations. We also discuss profoundly the violation of energy-momentum conservation law in $f(R,T)$ gravity and dynamical behavior of the model.