Rydberg-atom-enabled atomic vapor cell technologies show great potentials in developing devices for quantum enhanced sensors. In this paper, we demonstrate laser induced DC electric fields in an all-glass vapor cell without bulk or thin film electrodes. The spatial field distribution is mapped by Rydberg electromagnetically induced transparency spectroscopy. We explain the measured with a boundary-value electrostatic model. This work may inspire new ideas for DC electric field control in designing miniaturized atomic vapor cell devices. Limitations and other charge effects are also discussed.