On the natural gradient for variational quantum eigensolver


الملخص بالإنكليزية

The variational quantum eigensolver is a hybrid algorithm composed of quantum state driving and classical parameter optimization, for finding the ground state of a given Hamiltonian. The natural gradient method is an optimization method taking into account the geometric structure of the parameter space. Very recently, Stokes et al. developed the general method for employing the natural gradient for the variational quantum eigensolver. This paper gives some simple case-studies of this optimization method, to see in detail how the natural gradient optimizer makes use of the geometric property to change and improve the ordinary gradient method.

تحميل البحث