On the parametrized Tate construction and two theories of real $p$-cyclotomic spectra


الملخص بالإنكليزية

We give a new formula for $p$-typical real topological cyclic homology that refines the fiber sequence formula discovered by Nikolaus and Scholze for $p$-typical topological cyclic homology to one involving genuine $C_2$-spectra. To accomplish this, we give a new definition of the $infty$-category of real $p$-cyclotomic spectra that replaces the usage of genuinely equivariant dihedral spectra with the parametrized Tate construction $(-)^{t_{C_2} mu_p}$ associated to the dihedral group $D_{2p} = mu_p rtimes C_2$. We then define a $p$-typical and $infty$-categorical version of H{o}genhavens $O(2)$-orthogonal cyclotomic spectra, construct a forgetful functor relating the two theories, and show that this functor restricts to an equivalence between full subcategories of appropriately bounded below objects.

تحميل البحث