Recently, an aziridinium lead iodide perovskite was proposed as a possible solar cell absorber material. We investigated the stability of this material using a density-functional theory with an emphasis on the ring strain associated with the three-membered aziridinium cation. It is shown that the aziridinium ring is prone to opening within the PbI$_3$ environment. When exposed to moisture, aziridinium lead iodide can readily react with water. The resultant product will not likely be a stoichiometric lead halide perovskite structure.