We identify level one global Weyl modules for toroidal Lie algebras with certain twists of modules constructed by Moody-Eswara Rao-Yokonuma via vertex operators for type ADE and by Iohara-Saito-Wakimoto and Eswara Rao for general type. The twist is given by an action of $mathrm{SL}_{2}(mathbb{Z})$ on the toroidal Lie algebra. As a byproduct, we obtain a formula for the character of the level one local Weyl module over the toroidal Lie algebra and that for the graded character of the level one graded local Weyl module over an affine analog of the current Lie algebra.