Complex data structures such as time series are increasingly present in modern data science problems. A fundamental question is whether two such time-series are statistically dependent. Many current approaches make parametric assumptions on the random processes, only detect linear association, require multiple tests, or forfeit power in high-dimensional, nonlinear settings. Estimating the distribution of any test statistic under the null is non-trivial, as the permutation test is invalid. This work juxtaposes distance correlation (Dcorr) and multiscale graph correlation (MGC) from independence testing literature and block permutation from time series analysis to address these challenges. The proposed nonparametric procedure is valid and consistent, building upon prior work by characterizing the geometry of the relationship, estimating the time lag at which dependence is maximized, avoiding the need for multiple testing, and exhibiting superior power in high-dimensional, low sample size, nonlinear settings. Neural connectivity is analyzed via fMRI data, revealing linear dependence of signals within the visual network and default mode network, and nonlinear relationships in other networks. This work uncovers a first-resort data analysis tool with open-source code available, directly impacting a wide range of scientific disciplines.