Luminous blue variables (LBVs) are suprisingly isolated from the massive O-type stars that are their putative progenitors in single-star evolution, implicating LBVs as binary evolution products. Aadland et al. (A19) found that LBVs are, however, only marginally more dispersed than a photometrically selected sample of bright blue stars (BBS) in the LMC, leading them to suggest that LBV environments may not exclude a single-star origin. In both comparisons, LBVs have the same median separation, confirming that any incompleteness in the O-star sample does not fabricate LBV isolation. Instead, the relative difference arises because the photometric BBS sample is far more dispersed than known O-type stars. Evidence suggests that the large BBS separation arises because it traces less massive (~20 Msun), aging blue supergiants. Although photometric criteria used by A19 aimed to select only the most massive unevolved stars, visual-wavelength color selection cannot avoid contamination because O and early B stars have almost the same intrinsic color. Spectral types confirm that the BBS sample contains many B supergiants. Moreover, the observed BBS separation distribution matches that of spectroscopically confirmed early B supergiants, not O-type stars, and matches predictions for a ~10 Myr population, not a 3-4 Myr population. A broader implication for ages of stellar populations is that bright blue stars are not a good tracer of the youngest massive O-type stars. Bright blue stars in nearby galaxies (and unresolved blue light in distant galaxies) generally trace evolved blue supergiants akin to SN 1987As progenitor.