Hole-Doped M4SiTe4 (M = Ta, Nb) as an Efficient p-Type Thermoelectric Material for Low-Temperature Applications


الملخص بالإنكليزية

Solid-state thermoelectric cooling is expected to be widely used in various cryogenic applications such as local cooling of superconducting devices. At present, however, thermoelectric cooling using p- and n-type Bi2Te3-based materials has been put to practical use only at room temperature. Recently, M4SiTe4 (M = Ta, Nb) has been found to show excellent n-type thermoelectric properties down to 50 K. This paper reports on the synthesis of high-performance p-type M4SiTe4 by Ti doping, which can be combined with n-type M4SiTe4 in a cooling device at low temperatures. The thermoelectric power factor of p-type M4SiTe4 reaches a maximum value of approximately 60 uW cm-1 K-2 at 210 K and exceeds the practical level in a wide temperature range of 130-270 K. A finite temperature drop by Peltier cooling was also achieved in a cooling device made of p- and n-type Ta4SiTe4 whisker crystals. These results clearly indicate that M4SiTe4 is promising to realize a practical thermoelectric cooler for use at low temperatures, which are not covered by Bi2Te3-based materials.

تحميل البحث