The ultimate astronomical observatory would be a formation flying interferometer in space, immune to atmospheric turbulence and absorption, free from atmospheric and telescope thermal emission, and reconfigurable to adjust baselines according to the required angular resolution. Imagine the near/mid-infrared sensitivity of the JWST and the far-IR sensitivity of Herschel but with ALMA-level angular resolution, or imagine having the precision control to null host star light across 250m baselines and to detect molecules from the atmospheres of nearby exo-Earths. With no practical engineering limit to the formations size or number of telescopes in the array, formation flying interferometry will revolutionize astronomy and this White Paper makes the case that it is now time to accelerate investments in this technological area. Here we provide a brief overview of the required technologies needed to allow light to be collected and interfered using separate spacecrafts. We emphasize the emerging role of inexpensive smallSat projects and the excitement for the LISA Gravitational Wave Interferometer to push development of the required engineering building-blocks. We urge the Astro2020 Decadal Survey Committee to highlight the need for a small-scale formation flying space interferometer project to demonstrate end-to-end competency with a timeline for first stellar fringes by the end of the decade.