Conformal Three-Point Correlation Functions from the Operator Product Expansion


الملخص بالإنكليزية

We show how to construct embedding space three-point functions for operators in arbitrary Lorentz representations by employing the formalism developed in arXiv:1905.00036 and arXiv:1905.00434. We study tensor structures that intertwine the operators with the derivatives in the OPE and examine properties of OPE coefficients under permutations of operators. Several examples are worked out in detail. We point out that the group theoretic objects used in this work can be applied directly to construct three-point functions without any reference to the OPE.

تحميل البحث