We investigate the exotic $OmegaOmega$ dibaryon states with $J^P=0^+$ and $2^+$ in a molecular picture. We construct the scalar and tensor $Omega$$Omega$ molecular interpolating currents and calculate their masses within the method of QCD sum rules. Our results indicate that the mass of the scalar dibaryon state is $m_{OmegaOmega, , 0^+}=(3.33pm0.22) ,unit$, which is about $15 ,mathrm{MeV}$ below the $2m_Omega$ threshold. This result suggests the existence of a loosely bound molecular state of the $J^P=0^+$ scalar $OmegaOmega$ dibaryon with a small binding energy around 15 MeV. The mass of the tensor dibaryon is predicted to be $m_{OmegaOmega,, 2^+}=(3.24pm0.23), mbox{GeV}$, which may imply a deeper molecular state of the tensor $OmegaOmega$ dibaryon than the scalar channel. These exotic strangeness $S=-6$ and doubly-charged $OmegaOmega$ dibaryon states may be identified in the heavy-ion collision processes.