Humans do not make inferences over texts, but over models of what texts are about. When annotators are asked to annotate coreferent spans of text, it is therefore a somewhat unnatural task. This paper presents an alternative in which we preprocess documents, linking entities to a knowledge base, and turn the coreference annotation task -- in our case limited to pronouns -- into an annotation task where annotators are asked to assign pronouns to entities. Model-based annotation is shown to lead to faster annotation and higher inter-annotator agreement, and we argue that it also opens up for an alternative approach to coreference resolution. We present two new coreference benchmark datasets, for English Wikipedia and English teacher-student dialogues, and evaluate state-of-the-art coreference resolvers on them.