A nonlinear Lazarev-Lieb theorem: $L^2$-orthogonality via motion planning


الملخص بالإنكليزية

Lazarev and Lieb showed that finitely many integrable functions from the unit interval to $mathbb{C}$ can be simultaneously annihilated in the $L^2$ inner product by a smooth function to the unit circle. Here we answer a question of Lazarev and Lieb proving a generalization of their result by lower bounding the equivariant topology of the space of smooth circle-valued functions with a certain $W^{1,1}$-norm bound. Our proof uses a relaxed notion of motion planning algorithm that instead of contractibility yields a lower bound for the $mathbb{Z}/2$-coindex of a space.

تحميل البحث