Inverses of Cartan matrices of Lie algebras and Lie superalgebras


الملخص بالإنكليزية

The inverses of indecomposable Cartan matrices are computed for finite-dimensional Lie algebras and Lie superalgebras over fields of any characteristic, and for hyperbolic (almost affine) complex Lie (super)algebras. We discovered three yet inexplicable new phenomena, of which (a) and (b) concern hyperbolic (almost affine) complex Lie (super)algebras, except for the 5 Lie superalgebras whose Cartan matrices have 0 on the main diagonal: (a) several of the inverses of Cartan matrices have all their elements negative (not just non-positive, as they should be according to an a priori characterization due to Zhang Hechun); (b) the 0s only occur on the main diagonals of the inverses; (c) the determinants of inequivalent Cartan matrices of the simple Lie (super)algebra may differ (in any characteristic). We interpret most of the results of Wei Yangjiang and Zou Yi Ming, Inverses of Cartan matrices of Lie algebras and Lie superalgebras, Linear Alg. Appl., 521 (2017) 283--298 as inverses of the Gram matrices of non-degenerate invariant symmetric bilinear forms on the (super)algebras considered, not of Cartan matrices, and give more adequate references. In particular, the inverses of Cartan matrices of simple Lie algebras were already published, starting with Dynkins paper in 1952, see also Table 2 in Springers book by Onishchik and Vinberg (1990).

تحميل البحث