Effects of a magnetic field on the fragile antiferromagnetism in YbBiPt


الملخص بالإنكليزية

We present neutron diffraction data for the cubic-heavy-fermion YbBiPt that show broad magnetic diffraction peaks due to the fragile short-range antiferromagnetic (AFM) order persist under an applied magnetic-field $mathbf{H}$. Our results for $mathbf{H}perp[bar{1}~1~0]$ and a temperature of $T=0.14(1)$ K show that the $(frac{1}{2},frac{1}{2},frac{3}{2})$ magnetic diffraction peak can be described by the same two-peak lineshape found for $mu_{0}H=0$ T below the N{e}el temperature of $T_{text{N}}=0.4$ K. Both components of the peak exist for $mu_{0}Hlesssim1.4 T$, which is well past the AFM phase boundary determined from our new resistivity data. Using neutron diffraction data taken at $T=0.13(2)$ K for $mathbf{H}parallel[0~0~1]$ or $[1~1~0]$, we show that domains of short-range AFM order change size throughout the previously determined AFM and non-Fermi liquid regions of the phase diagram, and that the appearance of a magnetic diffraction peak at $(frac{1}{2},frac{1}{2},frac{1}{2})$ at $mu_{0}Happrox0.4$ T signals canting of the ordered magnetic moment away from $[1~1~1]$. The continued broadness of the magnetic diffraction peaks under a magnetic field and their persistence across the AFM phase boundary established by detailed transport and thermodynamic experiments present an interesting quandary concerning the nature of YbBiPts electronic ground state.

تحميل البحث