We provide several new $q$-congruences for truncated basic hypergeometric series with the base being an even power of $q$. Our results mainly concern congruences modulo the square or the cube of a cyclotomic polynomial and complement corresponding ones of an earlier paper containing $q$-congruences for truncated basic hypergeometric series with the base being an odd power of $q$. We also give a number of related conjectures including $q$-congruences modulo the fifth power of a cyclotomic polynomial and a congruence for a truncated ordinary hypergeometric series modulo the seventh power of a prime greater than 3.