Studying Magnetic Fields in Star Formation and the Turbulent Interstellar Medium


الملخص بالإنكليزية

Understanding the physics of how stars form is a highly-prioritized goal of modern Astrophysics, in part because star formation is linked to both galactic dynamics on large scales and to the formation of planets on small scales. It is well-known that stars form from the gravitational collapse of molecular clouds, which are in turn formed out of the turbulent interstellar medium. Star formation is highly inefficient, with one of the likely culprits being the regulation against gravitational collapse provided by magnetic fields. Measurement of the polarized emission from interstellar dust grains, which are partially aligned with the magnetic field, provides a key tool for understanding the role these fields play in the star formation process. Over the past decade, much progress has been made by the most recent generation of polarimeters operating over a range of wavelengths (from the far-infrared through the millimeter part of the spectrum) and over a range of angular resolutions (from less than an arcsecond through fractions of a degree). Future developments in instrument sensitivity for ground-based, airborne, and space-borne polarimeters operating over range of spatial scales are critical for enabling revolutionary steps forward in our understanding of the magnetized turbulence from which stars are formed.

تحميل البحث