In this paper, energy efficient resource allocation is considered for an uplink hybrid system, where non-orthogonal multiple access (NOMA) is integrated into orthogonal multiple access (OMA). To ensure the quality of service for the users, a minimum rate requirement is pre-defined for each user. We formulate an energy efficiency (EE) maximization problem by jointly optimizing the user clustering, channel assignment and power allocation. To address this hard problem, a many-to-one bipartite graph is first constructed considering the users and resource blocks (RBs) as the two sets of nodes. Based on swap matching, a joint user-RB association and power allocation scheme is proposed, which converges within a limited number of iterations. Moreover, for the power allocation under a given user-RB association, we first derive the feasibility condition. If feasible, a low-complexity algorithm is proposed, which obtains optimal EE under any successive interference cancellation (SIC) order and an arbitrary number of users. In addition, for the special case of two users per cluster, analytical solutions are provided for the two SIC orders, respectively. These solutions shed light on how the power is allocated for each user to maximize the EE. Numerical results are presented, which show that the proposed joint user-RB association and power allocation algorithm outperforms other hybrid multiple access based and OMA-based schemes.