Skew-constacyclic codes over $frac{mathbb{F}_q[v]}{langle,v^q-v,rangle}$


الملخص بالإنكليزية

In this paper, the investigation on the algebraic structure of the ring $frac{mathbb{F}_q[v]}{langle,v^q-v,rangle}$ and the description of its automorphism group, enable to study the algebraic structure of codes and their dual over this ring. We explore the algebraic structure of skew-constacyclic codes, by using a linear Gray map and we determine their generator polynomials. Necessary and sufficient conditions for the existence of self-dual skew cyclic and self-dual skew negacyclic codes over $frac{mathbb{F}_q[v]}{langle,v^q-v,rangle}$ are given.

تحميل البحث