We derive positivity bounds on low energy effective field theories which admit gapped, analytic, unitary, Lorentz invariant, and possibly non-local UV completions, by considering 2 to 2 scatterings of Jaffe fields whose Lehmann-K{a}ll{e}n spectral density can grow exponentially. Several properties of S-matrix, such as analyticity properties, are assumed in our derivation. Interestingly, we find that some of the positivity bounds obtained in the literature, such as sub-leading order forward-limit bounds, must be satisfied even when UV completions fall into non-localizable theories in Jaffes language, unless momentum space Wightman functions grow too rapidly at high energy. Under this restriction on the growth rate, such bounds may provide IR obstructions to analytic, unitary, and Lorentz invariant UV completions.