Ruling out 3 keV warm dark matter using 21 cm-EDGES data


الملخص بالإنكليزية

Weakly interacting cold dark matter (CDM) particles, which are otherwise extremely successful in explaining various cosmological observations, exhibit a number of problems on small scales. One possible way of solving these problems is to invoke (so-called) warm dark matter (WDM) particles with masses $m_x sim$ keV. Since the formation of structure is delayed in such WDM models, it is natural to expect that they can be constrained using observations related to the first stars, e.g., the 21 cm signal from cosmic dawn. In this work, we use a detailed galaxy formation model, Delphi, to calculate the 21 cm signal at high-redshifts and compare this to the recent EDGES observations. We find that while CDM and 5 keV WDM models can obtain a 21 cm signal within the observed redshift range, reproducing the amplitude of the observations requires the introduction of an excess radio background. On the other hand, WDM models with $m_x leq 3$ keV can be ruled out since they are unable to match either the redshift range or the amplitude of the EDGES signal, irrespective of the parameters used. Comparable to values obtained from the low-redshift Lyman Alpha forest, our results extend constraints on the WDM particle to an era inaccessible by any other means; additional forthcoming 21 cm data from the era of cosmic dawn will be crucial in refining such constraints.

تحميل البحث