We present designs for exponential stabilization of an ODE-heat PDE-ODE coupled system where the control actuation only acts in one ODE. The combination of PDE backstepping and ODE backstepping is employed in a state-feedback control law and in an observer that estimates PDE and two ODE states only using one PDE boundary measurement. Based on the state-feedback control law and the observer, the output-feedback control law is then proposed. The exponential stability of the closed-loop system and the boundedness and exponential convergence of the control law are proved via Lyapunov analysis. Finally, numerical simulations validate the effectiveness of this method for the `sandwiched system.