Kick and fix: the roots of quantum control


الملخص بالإنكليزية

When two operators $A$ and $B$ do not commute, the calculation of the exponential operator $e^{A+B}$ is a difficult and crucial problem. The applications are vast and diversified: to name but a few examples, quantum evolutions, product formulas, quantum control, Zeno effect. The latter are of great interest in quantum applications and quantum technologies. We present here a historical survey of results and techniques, and discuss differences and similarities. We also highlight the link with the strong coupling regime, via the adiabatic theorem, and contend that the pulsed and continuous formulations differ only in the order by which two limits are taken, and are but two faces of the same coin.

تحميل البحث