Search for gamma-ray emission from the Sun during solar minimum with the ARGO-YBJ experiment


الملخص بالإنكليزية

The hadronic interaction of cosmic rays with solar atmosphere can produce high energy gamma rays. The gamma-ray luminosity is correlated both with the flux of primary cosmic rays and the intensity of the solar magnetic field. The gamma rays below 200 GeV have been observed by $Fermi$ without any evident energy cutoff. The bright gamma-ray flux above 100 GeV has been detected only during solar minimum. The only available data in TeV range come from the HAWC observations, however outside the solar minimum. The ARGO-YBJ dataset has been used to search for sub-TeV/TeV gamma rays from the Sun during the solar minimum from 2008 to 2010, the same time period covered by the Fermi data. A suitable model containing the Sun shadow, solar disk emission and inverse-Compton emission has been developed, and the chi-square minimization method was used to quantitatively estimate the disk gamma-ray signal. The result shows that no significant gamma-ray signal is detected and upper limits to the gamma-ray flux at 0.3$-$7 TeV are set at 95% confidence level. In the low energy range these limits are consistent with the extrapolation of the Fermi-LAT measurements taken during solar minimum and are compatible with a softening of the gamma-ray spectrum below 1 TeV. They provide also an experimental upper bound to any solar disk emission at TeV energies. Models of dark matter annihilation via long-lived mediators predicting gamma-ray fluxes > $10^{-7}$ GeV $cm^{-2}$ $s^{-1}$ below 1 TeV are ruled out by the ARGO-YBJ limits.

تحميل البحث