On some properties of moduli of smoothness with Jacobi weights


الملخص بالإنكليزية

We discuss some properties of the moduli of smoothness with Jacobi weights that we have recently introduced and that are defined as [ omega_{k,r}^varphi(f^{(r)},t)_{alpha,beta,p} :=sup_{0leq hleq t} left| {mathcal{W}}_{kh}^{r/2+alpha,r/2+beta}(cdot) Delta_{hvarphi(cdot)}^k (f^{(r)},cdot)right|_p ] where $varphi(x) = sqrt{1-x^2}$, $Delta_h^k(f,x)$ is the $k$th symmetric difference of $f$ on $[-1,1]$, [ {mathcal{W}}_delta^{xi,zeta} (x):= (1-x-deltavarphi(x)/2)^xi (1+x-deltavarphi(x)/2)^zeta , ] and $alpha,beta > -1/p$ if $0<p<infty$, and $alpha,beta geq 0$ if $p=infty$. We show, among other things, that for all $m, nin N$, $0<ple infty$, polynomials $P_n$ of degree $<n$ and sufficiently small $t$, begin{align*} omega_{m,0}^varphi(P_n, t)_{alpha,beta,p} & sim t omega_{m-1,1}^varphi(P_n, t)_{alpha,beta,p} sim dots sim t^{m-1}omega_{1,m-1}^varphi(P_n^{(m-1)}, t)_{alpha,beta,p} & sim t^m left| w_{alpha,beta} varphi^{m} P_n^{(m)}right|_{p} , end{align*} where $w_{alpha,beta}(x) = (1-x)^alpha (1+x)^beta$ is the usual Jacobi weight. In the spirit of Yingkang Hus work, we apply this to characterize the behavior of the polynomials of best approximation of a function in a Jacobi weighted $L_p$ space, $0<pleinfty$. Finally we discuss sharp Marchaud and Jackson type inequalities in the case $1<p<infty$.

تحميل البحث