Quadratic to linear magnetoresistance tuning in TmB4


الملخص بالإنكليزية

The change of a materials electrical resistance (R) in response to an external magnetic field (B) provides subtle information for the characterization of its electronic properties and has found applications in sensor and storage related technologies. In good metals, Boltzmanns theory predicts a quadratic growth in magnetoresistance (MR) at low B, and saturation at high fields. On the other hand, a number of nonmagnetic materials with weak electronic correlation and low carrier concentration for metallicity, such as inhomogeneous conductors, semimetals, narrow gap semiconductors and topological insulators, two-dimensional electron gas (2DEG) show positive, non-saturating linear magnetoresistance (LMR). However, observation of LMR in single crystals of a good metal is rare. Here we present low-temperature, angle dependent magnetotransport in single crystals of the antiferromagnetic metal, TmB4. We observe large, positive and anisotropic MR(B), which can be tuned from quadratic to linear by changing the direction of the applied field. In view of the fact that isotropic, single crystalline metals with large Fermi surface (FS) are not expected to exhibit LMR, we attribute our observations to the anisotropic FS topology of TmB4. Furthermore, the linear MR is found to be temperature-independent, suggestive of quantum mechanical origin.

تحميل البحث