Dimer-monomer model on the generalized Tower of Hanoi graph


الملخص بالإنكليزية

We study the number of dimer-monomers $M_d(n)$ on the Tower of Hanoi graphs $TH_d(n)$ at stage $n$ with dimension $d$ equal to 3 and 4. The entropy per site is defined as $z_{TH_d}=lim_{v to infty} ln M_d(n)/v$, where $v$ is the number of vertices on $TH_d(n)$. We obtain the lower and upper bounds of the entropy per site, and the convergence of these bounds approaches to zero rapidly when the calculated stage increases. The numerical value of $z_{TH_d}$ is evaluated to more than a hundred digits correct. Using the results with $d$ less than or equal to 4, we predict the general form of the lower and upper bounds for $z_{TH_d}$ with arbitrary $d$.

تحميل البحث