By using double branched covers, we prove that there is a 1-1 correspondence between the set of knotoids in the 2-sphere, up to orientation reversion and rotation, and knots with a strong inversion, up to conjugacy. This correspondence allows us to study knotoids through tools and invariants coming from knot theory. In particular, concepts from geometrisation generalise to knotoids, allowing us to characterise invertibility and other properties in the hyperbolic case. Moreover, with our construction we are able to detect both the trivial knotoid in the 2-sphere and the trivial planar knotoid.