The feasibility of reservoir computing based on dipole-coupled nanomagnets is demonstrated using micro-magnetic simulations. The reservoir consists of an 2x10 array of nanomagnets. The static-magnetization directions of the nanomagnets are used as reservoir states. To update these states, we change the magnetization of one nanomagnet according to a single-bit-sequential signal. We also change the uniaxial anisotropy of the other nanomagnets using a voltage-induced magnetic-anisotropy change to enhance information flow, storage, and linear/nonlinear calculations. Binary tasks with AND, OR, and XOR operations were performed to evaluate the performance of the magnetic-array reservoir. The reservoir-computing output matrix was found to be trainable to perform AND, OR, and XOR operations with an input delay of up to three bits.